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Intelligent driving intelligence test for autonomous 
vehicles with naturalistic and adversarial 
environment 

1 1 1 1,2 ✉Shuo Feng , Xintao Yan , Haowei Sun , Yiheng Feng2 & Henry X. Liu 

Driving intelligence tests are critical to the development and deployment of autonomous 

vehicles. The prevailing approach tests autonomous vehicles in life-like simulations of the 

naturalistic driving environment. However, due to the high dimensionality of the environment 

and the rareness of safety-critical events, hundreds of millions of miles would be required to 

demonstrate the safety performance of autonomous vehicles, which is severely inefficient. 

We discover that sparse but adversarial adjustments to the naturalistic driving environment, 

resulting in the naturalistic and adversarial driving environment, can significantly reduce the 

required test miles without loss of evaluation unbiasedness. By training the background 

vehicles to learn when to execute what adversarial maneuver, the proposed environment 

becomes an intelligent environment for driving intelligence testing. We demonstrate the 

effectiveness of the proposed environment in a highway-driving simulation. Comparing with 

the naturalistic driving environment, the proposed environment can accelerate the evaluation 

process by multiple orders of magnitude. 
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Autonomous vehicles (AVs) have attracted significant 
attention in recent years because of their potential to 
revolutionize transportation safety and mobility. One 

critical step in the development and deployment of AVs is to test 
and evaluate their driving intelligence, which indicates whether 
an AV can operate safely and efficiently without human inter-
vention. However, current testing procedures for human-driven 
vehicles, such as Federal Motor Vehicle Safety Standards 
(FMVSS)1 and ISO 26262, only regulate automobile safety-related 
components, systems, and design features, without consideration 
of driving intelligence in completing driving tasks. To the best of 
the authors’ knowledge, to date there are no consensus nor 
standard procedures on how to test and evaluate AVs. During the 
past few years, although the problem of AV testing has been 
investigated extensively by various AV developers, government 
agencies, professional organizations, as well as academic institu-
tions, the theory and methods to support such testing and eva-
luation are lacking2,3. 
As shown in Fig. 1a, the prevailing state-of-the-art approach 

for AV testing uses the agent-environment framework4, through 
a combination of software simulation, closed-track testing, and 
on-road testing. The basic philosophy is to test the agents of AVs 
in a realistic driving environment, observe their performance, and 
make statistical comparisons to human driver performance. The 
challenge for AV testing, however, comes from three different 
aspects shown in Fig. 1b: First, the driving agent in AV is com-
monly developed based on statistics or artificial intelligence (AI) 
algorithms. The AI-based agent, which is usually a black box to 
external users, limits the use of traditional logic-based software 
verification and validation techniques5. Second, the driving 
environment is usually complex and stochastic. To represent the 
full complexity and variability of the environment, variables that 
define the environment are high dimensional, which can cause 
the “curse of dimensionality”. The stochasticity of the environ-
ment can also fail the traditional formal methods for absolute 
safety. Third, events of interest (e.g., accidents) for the driving 
intelligence test rarely happen, and the rareness of events can lead 
to the intolerable inefficiency issue for testing. Therefore, how to 
construct an intelligent testing environment that can test AV 

driving intelligence accurately and efficiently, with consideration 
of high dimensionality and the rareness of events, becomes the 
key to the AV testing problem. 
Most existing methods use the naturalistic driving environ-

ment (NDE) for driving intelligence testing of AVs. For example, 
on-road methods test AVs in the real-world NDE, while most 
simulation methods test high-fidelity AV models in life-like 
simulations of NDE, such as Intel’s CARLA6, Microsoft’s Air-
Sim7, NVIDIA’s Drive Constellation8, Google/Waymo’s Car-
Craft9, Baidu’s AADS10, etc. However, all these methods suffer 
from inefficiency issue, because of the “curse of dimensionality” 
and the rareness of events in NDE, as discussed above. It has been 
argued that hundreds of millions of miles and sometimes hun-
dreds of billions of miles would be required to demonstrate the 
safety performance of AVs at the level of human-driven vehi-
cles11. Not to mention that a brand-new testing process may be 
required if configurations of AVs are changed. It is inefficient 
even under aggressive simulation schemes. In fact, Waymo has 
only simulated 15 billion miles in total over the years, which is the 
world’s longest simulation test. To a certain extent, this ineffi-
ciency issue has hindered the progress of the AV development 
and deployment. 
Towards solving the inefficiency issue, scenario-based approaches 

have been proposed. Based on the importance sampling (IS) theory, 
critical scenarios can be purposely designed for accelerating the 
efficiency of AV evaluation12–17. However, existing scenario gen-
eration methods can only be applied for scenarios that involve 
simple maneuvers of a very limited number of vehicles with very 
short duration, for instance, a cut-in maneuver from a background 
vehicle for a few seconds. They are far from representing the full 
complexity and variability of the real-world driving environment. 
For example, an AV driving in a highway-driving environment can 
involve various maneuvers (e.g., lane-changing, car-following, over-
taking, etc.) of hundreds of vehicles for hours of time duration. Such 
a driving environment contains numerous distinctive spatio-
temporal combinations of scenarios, which cannot be handled by 
existing scenario-based approaches. 
Our approach to the construction of a simulation or test-track 

based AV testing environment has the following three 

Fig. 1 Driving intelligence testing with NADE. a Agent-environment framework. b Major challenges for agent-environment framework include the 
difficulty for applying traditional software validation methods for testing artificial intelligence (AI) based agents, the “curse of dimensionality” for modeling 
complex dynamic driving environment, and rareness of events of interest for driving intelligence testing. The blue vehicle denotes the autonomous vehicle, 
and the green vehicles denote background vehicles. c The NADE learns to balance the naturalistic environment and adversarial environment for driving 
intelligence testing of AVs based on the agent-environment framework, while ensuring unbiasedness and improving efficiency. The images of vehicles, 
balance scale, and explosion are previously published under the Creative Common CC0 1.0 Universal Public Domain Dedication. The image of smiley face 
is previously published under the Creative Commons Attribution-Share Alike 3.0 Unported license. The images of angry face and thinking face are 
previously published under the Creative Commons Attribution 4.0 International license. These images can be found from the followings links: https:// 
commons.wikimedia.org/wiki/File:C3top.png; https://commons.wikimedia.org/wiki/File:Balanced_scale_of_Justice.svg; https://commons.wikimedia.org/ 
wiki/File:Explosion-155624_icon.svg; https://commons.wikimedia.org/wiki/File:Mr._Smiley_Face.svg; https://commons.wikimedia.org/wiki/File: 
Twemoji12_1f621.svg; https://commons.wikimedia.org/wiki/File:Twemoji2_1f914.svg. 
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contributions: First, our approach generates the driving envir-
onment that provides spatiotemporally continuous testing sce-
narios for AVs. Suppose you want to test an AV in an urban 
environment, our approach can drive the AV continuously for 
miles in the environment during one test, interacting with mul-
tiple background vehicles and experiencing different adversarial 
scenarios. Second, the generated environment provides statisti-
cally accurate testing results. Our approach ensures that the 
testing results (such as accident rates of different accident types) 
of AVs in the generated environment are unbiased with the NDE. 
Third, the generated environment addresses the inefficiency issue 
of the NDE. Comparing with the NDE, our approach reduces the 
testing time with multiple orders of magnitude for the same 
evaluation accuracy. 
To achieve evaluation efficiency without loss of accuracy, our 

approach is based on NDE, but with sparse but intelligent 
adjustments. The resulting driving environment is both natur-
alistic and adversarial, in that most of the background vehicles 
(more generally, road users) follow naturalistic behaviors for most 
of the time, and only at selected moments, selected vehicles 
execute specific designed adversarial moves. As shown in Fig. 1c, 
the key to creating the naturalistic and adversarial driving 
environment (NADE) is to train the background vehicles in the 
NDE to learn when to execute what adversarial maneuver while 
ensuring unbiasedness and improving efficiency. The learning 
process is guided by our theoretical discovery below. 
In essence, AV driving intelligence testing can be considered as 

a rare event estimation problem with high-dimensional variables. 
However, few existing methods can handle both the challenges of 
the rareness of events and high dimensionality. Testing AVs in 
NDE is an application of the Crude Monte Carlo (CMC) the-
ory18, which suffers from inefficiency problem for rare events. 
The IS theory has been developed for solving the challenge of rare 
events, but it can only be applied in low-dimensional situations19. 
It was proved that its efficiency would decrease exponentially with 
the increase of dimensionality. Therefore, both CMC and IS have 
limitations for the rare event estimation problem with high-
dimensional variables. However, people have not paid much 
attention to the advantage of the CMC theory for high dimen-
sionality. We discover that, if there exists a small subset of vari-
ables that are critical to the rare events, applying IS theory with 
the small subset of variables while applying the CMC theory with 
the remaining variables can help overcome both the challenges of 
the rareness of events and high dimensionality. We provide a 
theoretical proof of this in Theorem 1 in Methods. This is sig-
nificant as this can apply to a general set of problems with such 
characteristics. For safety-critical performance tests of AVs, for-
tunately, these small but critical variables exist because most of 
the vehicle accidents involve only a small number of vehicles in a 
short period20. According to the Fatality Analysis Reporting 
System (FARS), about 91.5% of fatal injuries suffered in motor 
vehicle traffic crashes in the United States in 2018 involved only 
one or two vehicles21. 
As the construction of NADE is based on NDE, we propose a 

data-driven approach to resemble naturalistic behavioral patterns 
of background vehicles for the generation of NDE. The basic idea 
is to model NDE with the Markov decision process, calculate 
naturalistic distributions of vehicle maneuvers from naturalistic 
driving data, and sample vehicle maneuvers from the distribu-
tions. The NDE provides the foundation and benchmark for the 
generation and evaluation of NADE. To identify the small but 
critical variables for the generation of NADE, we propose a 
reinforcement learning approach to learn the challenge of back-
ground vehicle maneuvers to the AV under test. This is similar to 
the value network approach in AlphaGo22 as the maneuver 
challenges of background vehicles at any moment are 

interdependent with the AV maneuvers in the following time 
steps. In addition, as the specifics of the behavior model of the AV 
under test are usually unknown, we propose utilizing surrogate 
models (SMs) during the learning process. The construction of 
SMs provides an elegant way to leverage prior knowledge such as 
testing results for previous AV models. Based on the maneuver 
challenge, the principal other vehicles (POVs) can be identified 
from all surrounding background vehicles, and their maneuvers 
can be adjusted at critical moments. In such a manner, only the 
distributions of a small but critical set of variables are twisted 
according to the IS theory, while the remaining variables follow 
their naturalistic distributions. Such sparse but intelligent 
adjustment of NDE results in NADE. 
We demonstrated the effectiveness of our method for AV 

testing in a highway driving environment based on a high fidelity 
simulation platform, CARLA6, and a highway traffic simulator23, 
though our method is also applicable for other driving environ-
ments, such as city driving. We utilized the naturalistic driving 
data (NDD) from the Safety Pilot Model Deployment (SPMD) 
program24 and the Integrated Vehicle-Based Safety System 
(IVBSS)25 at the University of Michigan, Ann Arbor. To validate 
the generated NADE, we constructed two representative AV 
agents based on driving behavior models and deep reinforcement 
learning techniques, respectively. The accident rates of the AVs 
were utilized for the driving intelligence measurement. We tested 
the AVs in NDE and NADE, respectively. Simulation results 
show that the NADE could significantly accelerate the evaluation 
process by multiple orders of magnitude with the same accuracy, 
comparing with the NDE-based method. 

Results 
Generation and evaluation of NDE. Generation of NDE is a 
prerequisite for unbiased simulation-based intelligence tests of 
AVs. It usually has two pillars. The first is creating realistic inputs 
to AVs’ sensors, such as photorealistic images that resemble real-
world renderings. There exists a large body of literature on this 
topic based on computer graphics, physics-based modeling, robot 
motion planning, and augmentation techniques. In this paper, we 
achieved real-world renderings by using the open-source plat-
form CARLA. The second is creating naturalistic behavioral 
patterns of traffic participants. Although human driving beha-
viors have been extensively investigated in the transportation 
engineering domain, most existing models were developed for 
traffic flow analysis purposes, which may not be suitable for 
driving safety assessment. To estimate AV’s safety performance, 
the probabilistic distributions of human driving behaviors at 
different driving conditions are critical. Only with naturalistic 
probabilistic distributions, simulation results can predict their 
performances in the real world. Therefore, the goal of NDE is to 
generate stochastic human driving behaviors, whose probabilistic 
distributions are consistent with the NDD. 
In this paper, we present a simple yet effective data-driven 

approach to resemble the naturalistic behavioral distributions of 
vehicles. The basic idea is to model NDE with Markov decision 
process (MDP), calculate empirical distributions of vehicle 
maneuvers given vehicle states from NDD, and then sample vehicle 
maneuvers from the distributions. The decision process of vehicle 
maneuvers in NDE can be represented by a decision tree15. Each  
node of the tree denotes a specific realization of vehicle states, while 
each path denotes a specific realization of vehicle maneuvers. If all 
vehicles select their maneuvers by sampling from the naturalistic 
distributions, the driving environment results in NDE. The 
proposed method for NDE generation can be further improved 
by advanced data processing techniques26–28 and modeling 
techniques29, but we leave those for future studies. 
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Fig. 2 Data processing of the NDD. a Object detection of vehicles and lane markings for an example frame captured by cameras. b Identification of lane 
changing maneuvers by analyzing lateral distance to lane markings. c Data categorization of vehicle maneuvers considering surrounding vehicles. The 
image of vehicles is previously published at https://commons.wikimedia.org/wiki/File:C3top.png under the Creative Common CC0 1.0 Universal Public 
Domain Dedication. d Examples of empirical distributions of vehicle maneuvers for each category. States of the examples are r1 = 30 m v1 = v2 = 30m s−1 

(car following); r1 = 40 m, r2 = 21 m, v1 = v2 = v3 (cut in); r1 = 31 m, v1 = v2 (lane change, no adjacent vehicle); r1 = 20 m, r2 = 32 m v1 = v2 = v3 (lane 
change, one adjacent vehicle); and r1 = 28 m, r2 = 26 m, v1 = v2 = v3 (lane change, two adjacent vehicles). 

To obtain naturalistic distributions, we collected NDD from the 
SPMD program and IVBSS at the University of Michigan, Ann 
Arbor. The SPMD database is one of the largest databases in the 
world that recorded naturalistic driving behaviors over 34.9 million 
travel miles from 2842 equipped vehicles in Ann Arbor, Michigan. 
In the database, there are 98 sedans equipped with the data 
acquisition system (DAS). In the IVBSS project, 108 randomly 
sampled drivers used sixteen Honda Accord vehicles with the DAS 
for over 40 days. Figure 2a shows an example frame captured by 
the Mobileye camera of the DAS equipped vehicles. At a frequency 
of 10 Hz, the data contain positions, speeds, and accelerations of all 
recorded vehicles, and measured both longitudinal and lateral 
distances between vehicles and lane markings. We queried the data 
with the following criteria: (1) vehicle was traveling on a highway; 
(2) vehicle was traveling at a speed between 20 m s−1 and 40m s−1; 
(3) dry surface condition; (4) daylight condition. The resulting 
dataset represented more than 1.86 × 108 points of data. By 
analyzing the lateral distance to lane markings, we identified a total 
number of 1.4 × 104 lane-changing maneuvers (Fig. 2b). Consider-
ing the driving environment of the subject vehicle (SV), we further 
categorized the queried data into six groups: free driving, car 
following, cut in, lane change with zero, one, and two adjacent 
vehicles (Fig. 2c). The vehicle maneuvers were discretized into 33 

actions: left lane change, 31 discrete longitudinal accelerations 
([−4, 2] with 0.2 m s−2 discrete resolution), and right lane change. 
To simplify the maneuvers, longitudinal accelerations were 
assumed zero during the lane changing process. Then, the 
empirical distribution of each maneuver at each state was calculated 
by its exposure frequency in the dataset of the corresponding 
category. Figure 2d shows examples of the obtained distributions 
such as accelerations of the free driving and car following 
categories, and lane changing probabilities of the other four 
categories, given specific states.  

The NDE is generated by sampling initial conditions and 
vehicle maneuvers from the obtained distributions. The goal of 
initialization is to resemble naturalistic speeds and distances of 
vehicles as a starting point of the NDE simulation. Toward this 
goal, the first vehicle of each lane is determined by sampling its 
position inside an initial zone and its speed from the empirical 
speed distribution. Then the joint distributions of bumper-to-
bumper distances and relative speeds are queried from the 
obtained empirical distributions so that initial positions and 
speeds of downstream vehicles can be determined sequentially for 
each lane (Fig. 3a, top). At each time step of the NDE simulation, 
vehicle maneuvers are determined by sampling from the 
empirical distributions of each corresponding maneuver category. 
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Fig. 3 Generation and evaluation of the NDE. a Example of the naturalistic driving environment (NDE) generation including initialization (top) and vehicle 
maneuver determination (bottom). The image of vehicles is previously published at https://commons.wikimedia.org/wiki/File:C3top.png under the 
Creative Common CC0 1.0 Universal Public Domain Dedication b Evaluation results of the generated NDE. Top: the ground truth comes from the 
distributions of naturalistic driving data, and the distributions of our method come from simulations of the generated NDE. Bottom: simulation results of the 
intelligent driving model (IDM) model calibrated by the dataset from Virginia and Shanghai, respectively, and the Wiedemann99 model calibrated by the 
dataset from Shanghai. 

For example, as shown in Fig. 3a (bottom), the SV has 33 possible 
maneuvers: left lane change (with two adjacent vehicles), 31 car 
following accelerations, and right lane change (in this case it is a 
cut in). To simplify the sampling process, all vehicles are assumed 
to select maneuvers independently and simultaneously for each 
time step. This completes the simulation for one time step (1 s) 
with all vehicle states updated. The underlying highway traffic 
simulator23 determines specific positions, speeds, and steering 
angles of all vehicles with bicycle models at a frequency of 15 Hz 
during each time step. All lane-changing maneuvers are set 
completed within one time step. The simulation continues until 
all simulation time steps are completed. An additional explana-
tion of the NDE generation is provided in Supplementary 
Movie 1. 
To evaluate the generated NDE, we compared the distributions 

of speeds and bumper-to-bumper spaces (range) between the 
constructed NDE and the ground truth from NDD. We collected 
data by simulating NDE for about 20,000 kilometers. Figure 3b 

(top) shows that the generated NDE produces the probabilistic 
distributions that are very similar to the naturalistic ones. To 
quantify the similarity, we calculated the Hellinger distance and 
mean absolute error (MAE). As for comparisons, we also 
simulated two well-known driving behavior models in the 
transportation domain, Intelligent Driver Model (IDM)30 and 
Wiedemann99 model, whose parameters were calibrated by the 
NDD from Virginia31 (denoted as VT100 IDM) and Shanghai32 

(denoted as Shanghai IDM and Shanghai W99), respectively. We 
collected data by simulating these three models for about 20,000 
kilometers, respectively. For fair comparisons, we set the same 
traffic volumes (about 1360 vehicles per hour per lane) for all 
simulations and collected data after the warm-up time. As shown 
in Fig. 3b (bottom), all distributions of these models are 
significantly abnormal and unnatural, because of the lack of 
model randomness and flexibility, though we cannot access the 
specific NDD (the ground truth) from Virginia and Shanghai for 
quantitative comparisons. This also provides evidence that 
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existing driving behavior models cannot be used directly for the 
construction of NDE. 

Generation and evaluation of NADE. The most significant part 
of our method is the generation of NADE for driving intelligence 
testing of AVs. In essence, we aim to construct new distributions, 
as the replacement of the naturalistic distributions in NDE, for 
sampling maneuvers of background vehicles (BVs). The goal is to 
adjust the maneuvers of BVs intelligently to test the driving 
intelligence of an AV unbiasedly and efficiently. As our method is 
based on the importance sampling theory, the new distributions 
are also denoted as importance functions. To solve the challenge 
of high dimensionality, we only twist the behavior distributions of 
the principal other vehicle (POV) at critical moments, while 
others keep following their naturalistic distributions as in NDE. 
Because most accidents involve only a small number of vehicles, it 
is reasonable to identify at most one POV at each moment, and 
the generalization of our method to multiple POVs is straight-
forward. In the section of “Methods”, we provide theoretical 
proof on the unbiasedness and efficiency of the proposed method. 
To identify the POV and construct the importance function, at 

each time step, each BV’s maneuver is evaluated by a newly 
defined quantity, criticality, which can be computed as a 
multiplication of exposure frequency and maneuver challenge. 
The exposure frequency represents the naturalistic probability of 
the maneuver in NDE, while the maneuver challenge measures its 
safety challenge to the AV under test. A BV is identified as the 
POV if its criticality value is largest among all BVs and larger than 
a threshold. The moment with at least one POV is identified as a 
critical moment. For the POV at the critical moment, the defensive 
importance sampling33 is adopted, and the importance function is 
constructed by the weighted average of the exposure frequency and 
the normalized criticality. By sampling maneuvers of the POVs 
from the importance functions at critical moments, while keeping 
other vehicles follow naturalistic distribution at all non-critical 
times, the resulting NDE becomes both naturalistic and adversar-
ial, i.e., the NADE. 
As discussed above, one important step of our method is to 

calculate the maneuver challenge of each BV’s maneuver at every 
state. The maneuver challenge is defined as the occurrence 
probability of a crash accident with the AV under test if the BV 
takes the maneuver at the state. As the calculation of maneuver 
challenge involves the interdependency of maneuvers from both 
the AV and BVs in the following time steps, reinforcement 
learning or deep reinforcement learning methods with delayed 
rewards may be used, similar to the use of value networks in 
AlphaGo22. In this paper, we adopted reinforcement learning 
techniques for basic scenarios such as car-following, while more 
general scenarios can be approximated by the combination of 
basic scenarios. 
As the specifics of the behavior model of the AV under test are 

usually unknown, we utilize surrogate models (SMs) to 
approximate the maneuver challenge. Although approximation 
errors usually exist, the maneuver challenge can provide valuable 
information on the impact of BV’s maneuvers. SMs can be 
constructed based on common knowledge of AVs or prior tests of 
AVs. In this study, we utilize the IDM and MOBIL (Minimizing 
Overall Braking Induced by Lane change) models as SMs, which 
are commonly used in the transportation domain34. To capture 
the uncertainty of AVs, we modify the MOBIL model as a 
stochastic lane-changing model described in more detail in the 
Supplementary Methods. 
With the SMs, we propose to learn the maneuver challenge for 

car-following scenarios by the reinforcement learning (RL) method 
(Fig. 4a, top). Specifically, the state is defined as the BV’s speed, 

bumper-to-bumper distance, and speed difference, and the action is 
defined as the BV’s acceleration. Based on MDP, car-following 
scenarios can be represented by a decision tree, where each branch 
from the initial state to the terminal state specifies a car-following 
trajectory. To handle the delayed reward of AV’s accidents, the 
state-action value of RL is defined as the maneuver challenge, while 
the reward is set to one for the AV’s accident event and zero for safe 
states. The states and actions, which may eventually lead to 
accidents of the AVs, have positive challenge values. Readers can 
find more technical details15. The learning process took only about 
20 min to the convergence in a desktop computer equipped with 
Intel i7-7700 CPU and 16 G RAM. 
For general scenarios, we propose to calculate the maneuver 

challenge for each BV based on the maneuver prediction of the AV 
and the results of car-following scenarios (Fig. 4b). The basic idea is 
to calculate the maneuver challenge of each BV at the current time 
by taking the expectation of its maneuver challenge over all of its 
possible maneuvers at the next time step. The AV’s maneuvers are 
predicted as a probability distribution by the SMs. To demonstrate 
the computation of maneuver challenge, let us take the BV in the 
top left of Fig. 4b as an example. For the BV, there are two possible 
maneuvers, one is longitudinal acceleration, and the other is to take 
the right lane change. For the AV, there are three possible 
maneuvers: left lane change, longitudinal accelerations, and right 
lane change. Each of the maneuvers is predicted by the SM with a 
probability. Between the AV and the BV, there are a total of six 
possible maneuver combinations, among which two of them are 
predicted to have non-zero maneuver challenges in the next time 
step. One is the BV makes right lane change while the AV remains 
longitudinal, the other is the BV remains longitudinal while the AV 
makes left lane change. In both scenarios, the BV and the AV are in 
a car-following situation after the lane-change maneuver, where the 
maneuver challenge can be obtained with the RL model discussed 
above. The overall maneuver challenge of the BV is an expectation 
of those in the two car-following situations. 
After calculating the maneuver challenge, the criticality of each 

BV’s maneuver at each state can be calculated. For example, as 
shown in Fig. 5a, the exposure frequency of each BV can be 
queried as in NDE, and the maneuver challenge is calculated as 
discussed above. Then the criticality is obtained by multiplying 
the exposure frequency and maneuver challenge. The criticality of 
most BVs’ maneuvers is zero because either the exposure 
frequency is zero (impossible maneuver) or the maneuver 
challenge is zero (unchallenging maneuver). 
Among all the BVs surrounding the AV, a BV is identified as 

the POV if its criticality value is the largest and larger than a 
threshold (e.g., 0). The moment with a POV is identified as the 
critical moment. For the POV at the critical moment, the 
importance functions are constructed by the weighted average of 
the exposure frequency and the normalized criticality: with the 
probability ε, we sample maneuvers from the exposure frequency, 
while with the probability 1−ε, we sample maneuvers from the 
normalized criticality. Inspired by the defensive importance 
sampling, the weighted average can mitigate the influences of the 
approximation errors of maneuver challenge. The maneuver of 
POV at the critical moment is then sampled from the importance 
function, while maneuvers for all other vehicles are sampled from 
the naturalistic distribution as in NDE. This completes the 
simulation for one time step (1 s is used in our examples) with all 
vehicle states updated. The simulation continues until accidents 
happen or all simulation time steps are completed. Figure 5b 
shows an example of the NADE generation procedure. An 
additional explanation of the NADE generation is provided in 
Supplementary Movie 2. 
To evaluate the generated NADE, we completed 2000 km 

simulations of AVs in NDE and NADE, respectively, and 
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Fig. 4 Illustration of maneuver challenge calculation. a Maneuver challenge calculation of the BV’s accelerations for car following scenarios based on 
reinforcement learning techniques. The car following scenarios are formulated based on the Markov decision process (MDP), and the maneuver challenge 
values are calculated by the learning process. b Example of maneuver challenge calculation for general scenarios based on autonomous vehicle (AV)’s 
maneuver prediction by surrogate models (SMs) and results of car-following scenarios. The image of vehicles is previously published at https://commons. 
wikimedia.org/wiki/File:C3top.png under the Creative Common CC0 1.0 Universal Public Domain Dedication. 

calculated the distributions of bumper-to-bumper spaces and 
time-to-collision (TTC) for AVs. To investigate the influences of 
AVs, we developed two different types of AV models: the AV-I 
model was constructed based on IDM and MOBIL, while the AV-
II model was trained by deep reinforcement learning (DRL) 
techniques considering both efficiency and safety. More details on 
AV-I and AV-II can be found in the Supplementary Methods. 
Figure 6a, b shows that, for the AV-I model, NADE generates 
very similar distributions as NDE (naturalistic), but much more 
dangerous scenarios with small distances and TTC (adversarial). 
It is also true for the AV-II model, as shown in Fig. 6c, d. The 
results also indicate that the AV-II model is more aggressive than 
the AV-I model, because the AV-II model has smaller bumper-
to-bumper distances and TTC in NDE. This is not surprising 
because IDM and MOBIL are designed to be collision-free so AV-
I is comparatively conservative. 
We also compared the events encountered by the AVs in 

NDE and NADE. Besides the accident event, we defined the 

events of BV cut-in, BV hard brake, lane conflict, and AV lane 
change, as shown in Fig. 6e. We queried these events with the 
following criteria, respectively: (a) a BV cuts in the AV within 
1.5 s time headway (THW); (b) a leading BV within 1.5 s THW 
brakes harder than −3 ms−2; (c) the AV and BV are within 1.5 s 
THW and change to the same lane simultaneously; (d) the AV 
changes its lane to avoid the front BV. As shown in Fig. 6(f, g), 
comparing with NDE, NADE generates many more events of 
the accident, BV cut-in, and lane conflict, and a similar number 
of BV hard brake events, for both the two AV models. Actually, 
NDE has no event of accident, BV cut in, and lane conflict in 
the 2000 km simulations for both the AVs, because of the 
rareness of these events. Moreover, as shown in Fig. 6h, i, 
NADE generates much more evasive lane change maneuvers of 
both the AVs with small relative distances (r1) and speed 
differences (RR). All these results show that NADE can test the 
AVs much more effectively by more valuable events, comparing 
with NDE. 
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Fig. 5 Illustration of NADE generation. a Example of criticality calculation. For each background vehicle (green vehicle) at each time step, the criticality of 
each maneuver is calculated by the multiplication of exposure frequency and maneuver challenge. The blue vehicle denotes the autonomous vehicle. 
b Example of the naturalistic and adversarial driving environment (NADE) generation. For each time step, the criticality summations of all background 
vehicles are calculated for the identification of the principal other vehicle (POV, orange vehicle). If the POV exists, the importance function is calculated, 
and the maneuver of the POV is sampled from the importance function, while others follow their naturalistic distributions. The image of vehicles is 
previously published under the Creative Common CC0 1.0 Universal Public Domain Dedication at https://commons.wikimedia.org/wiki/File:C3top.png. 

We further investigated the adjustment frequency of BVs’ 
maneuvers in NADE. Results show that, for every driving mile of 
the two AVs, we adjusted average of 6.51 and 5.43 times, 
respectively. As a comparison, there are a total of 381.27 and 
351.01 BVs’ maneuvers in the neighborhood (the closest eight 
vehicles within 120 m) of the AVs every mile. Therefore, we only 
adjust about 1.7% and 1.5% maneuvers of the environment, 
which is very sparse and thus keep the environment naturalistic. 
It validates that sparse but intelligent adjustment of NDE can 
significantly improve test effectiveness. 

Accuracy and efficiency of driving intelligence testing in 
NADE. The accuracy and efficiency of driving intelligence test in 
NADE are theoretically guaranteed and validated in our simula-
tion. To measure the driving intelligence regarding safety, acci-
dent rates of the AVs in NDE are utilized as the benchmark. As 
the NDE is generated based on NDD, it can represent the safety 
performance of the AVs in the real world. In our experiments, we 
compared the estimated accident rates and required numbers of 
tests for both NDE and NADE. For the convenience of experi-
ments, we conducted one simulation test for a constant driving 
distance (400 m) of the AVs, recorded the test results (accident or 
not) of the AVs, and calculated the accident rate per simulation 

test. As the distance of each test is constant, it can easily trans-
form between the accident rate per simulation test and the driving 
distance. More details can be found in the “Methods” section. To 
investigate the influences of AV models, both the AV-I and the 
AV-II models were tested. 
Figure7a–d shows the evaluation results of the accident rate per 

test for both the AVs in NDE and NADE. The blue line represents 
the results of testing in NDE, and the bottom x-axis indicates the 
number of tests. The red line represents the results in NADE, and 
the top x-axis for the number of tests. The light shadow represents 
the 90% confidence level. As shown in Fig. 7a, c, NADE obtains the 
same accident rate estimation with NDE by a much smaller 
number of tests for both the AVs. We further calculated the 
average driving distance per accident, which were 5.13 × 105 and 
1.54 × 106 miles per accident. As human drivers in the US have on 
average 4.79 × 105 miles between two accidents on highway35, the  
AV-I model has similar safety performance with human drivers, 
while the AV-II model is better. 
To measure the efficiency, we calculated the relative half-width 

(RHW)12 as the measurement of evaluation precision and 
calculated the minimum number of tests for reaching a pre-
determined precision threshold (RHW is 0.3). As shown in 
Fig. 7b, for the AV-I model, NADE requires only 8.74 × 104 
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Fig. 6 Evaluation of the generated NADE. Distributions of bumper-to-bumper distance (a) and TTC (b) for the AV-I model. Distributions of bumper-to-
bumper distance (c) and TTC (d) for the AV-II model. e Illustration of the events of background vehicle (BV, green vehicle) cut in, BV hard brake, lane 
conflict, and autonomous vehicle (AV, blue vehicle) lane change. The image of vehicles is previously published under the Creative Common CC0 1.0 
Universal Public Domain Dedication at https://commons.wikimedia.org/wiki/File:C3top.png. The number of events encountered by the AV-I model (f) 
and the AV-II model (g) for every 100 miles. Distributions of lane changing events of the AV-I model (h) and the AV-II model (i), where the evasive lane 
change events are circled by the red dashed lines. 

number of tests, while NDE requires 4.39 × 107 number of tests. 
Our method can accelerate the evaluation for about 500 times and 
reduce about 10 million driving miles. Similarly, for the AV-II 
model, NADE requires the 2.32 × 104 number of tests, while NDE 
requires 1.41 × 108 number of tests, as shown in Fig. 7d. Our 
method can accelerate the evaluation for about 6,000 times and 
eliminate 35 million driving miles. 

To investigate the influences of parameters in NADE, we 
further conducted the sensitivity analysis of ε, which  was used  
in constructing important functions. For each value (0.1, 0.3, 
and 0.5), we completed the tests in NADE and calculated the 
minimum number of tests for reaching the precision threshold. 
To mitigate the randomness of the results, we repeated the tests 
10 times, and calculated the average minimum number of tests, 
as shown in Table 1. Please note that NDE is equivalent to 
NADE with ε = 1. Results show that NADE can improve the 

evaluation efficiency significantly for all three values. The best 
result is obtained for the AV-I model with ε = 0.5 and AV-II 
model with ε = 0.3. As discussed before, the introduction of ε is 
to mitigate the influence of approximation errors of maneuver 
challenges. As the approximation errors may be different for 
different AVs, the optimal value of ε and the optimal 
acceleration rates are different. In practice, ε = 0.5 is a good 
choice balancing the optimality and the robustness. 

To investigate the computational cost of NADE, we also 
compared the average wall-clock time used by NDE and NADE 
for reaching the precision threshold. We conducted the simula-
tions of NDE and NADE on the University of Michigan’s Great 
Lakes High-Performance Computing (HPC) cluster using 500 
cores (Intel Xeon Gold 6154 processor) and 2500 GB RAM. As 
shown in Table 1, the tests in NADE reduce the computational 
time significantly for both AV models with all three values of ε. 
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Fig. 7 Evaluation accuracy and efficiency for the two AVs by NDE and NADE. The accident rate estimation of the AV-I model (a) and the AV-II model (c). 
The relative half-width of the AV-I model (b) and the AV-II model (d). e Illustration of the five accident types. Type 1: the autonomous vehicle (AV, blue 
vehicle) has a rear-end collision with the background vehicle (BV, green vehicle). Type 2: the BV has a rear-end collision with the AV. Type 3: the AV makes 
a lane change and has a sideswipe collision with the BV. Type 4: the BV makes a lane change and has a sideswipe collision with the AV. Type 5: both the AV 
and BV make a lane change and have a sideswipe collision. The image of vehicles is previously published at https://commons.wikimedia.org/wiki/File: 
C3top.png under the Creative Common CC0 1.0 Universal Public Domain Dedication. f Unweighted accident rate of each type for the AV-II model in the 
naturalistic and adversarial driving environment (NADE). g Accident rate of each type in the naturalistic driving environment (NDE) and weighted accident 
rate of each type in NADE. 

Table 1 The average minimum number and average wall-clock time of tests in the naturalistic driving environment (NDE) and the 
naturalistic and adversarial driving environment (NADE) with different parameters ε = 0.1, 0.3, 0.5 for reaching the precision 
threshold (RHW is 0.3). 

Autonomous vehicle NADE (ε = 0.1) NADE (ε = 0.3) NADE (ε = 0.5) NDE (ε = 1.0) 

AV-I No. of tests 1.85 × 105 1.52 × 105 1.14 × 105 4.39 × 107 

AV-I Time (s) 324.61 268.14 196.82 6.89 × 104 

AV-II No. of Tests 9.40 × 103 2.27 × 103 6.01 × 103 1.41 × 108 

AV-II Time (s) 17.25 4.06 10.66 2.33 × 105 

To validate the unbiasedness about accident types, we adopted data regarding fatal injuries suffered in motor vehicle traffic 
the crash type diagram defined by the Fatality Analysis Reporting crashes. For the highway driving case in this paper, we only have 
System (FARS)36, which is a nationwide census provided by the accidents between the AV and BVs, so the five accident types 
National Highway Traffic Safety Administration (NHTSA) for are identified, as shown in Fig. 7e. We note that accident type 1 
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can also be caused by reckless cut-in of the BV, where the 
difference from type 4 is that the AV collides with the BV from 
the rear end. We have compared the results for the AV-II model 
in NDE and NADE. Figure 7f shows the unweighted accident rate 
of each type in NADE. As NADE is more adversarial than NDE, 
the total accident rate is 0.046 accidents per simulation test, which 
is much larger than NDE. As required by the importance 
sampling theory, each accident event should be weighted by the 
likelihood ratio (see the “Methods” section) to keep the 
unbiasedness. Figure 7g shows that the weighted accident rates 
for all five types are the same as the results in NDE within the 
evaluation precision (the relative half-width is smaller than 0.3). 
The summation of the accident rates of all five types is the same 
as the total accident rate, so these five types include all accidents 
of the AV-II model in both NDE and NADE. 

Adversarial examples in NADE. We investigated the capability 
of NADE for generating adversarial examples. Adversarial 
examples have been widely investigated in the domain of machine 
learning. By applying small but intentional perturbations to 
examples from the dataset, adversarial examples can cause severe 
failures to many machine-learning methods and, therefore, pro-
vide insights for further improvement37. Similarly, adversarial 
examples, sometimes known as corner cases, edge cases, or worst 
cases, play an important role in the development and evaluation 
of AVs. As they happen rarely in the NDE, it is significant to 
generate adversarial examples systematically. As demonstrated 
above, the NADE can generate many more accidents than the 
NDE. The key is to identify cases that are valuable and infor-
mative. We propose two criteria as examples to illustrate the 
potential of NADE for generating adversarial examples. The first 
is the simulation weight, which is the likelihood ratio of the 
simulation test. A smaller simulation weight usually indicates a 
higher probability of the test to be an adversarial example. The 
second is the diversity of the events (as defined in Fig. 6e) 
involved during the test. A test involving diverse events usually 
contains more information for understanding the AV model 
under test. Figure 8 provides several examples identified using the 
above criteria. The blue vehicle represents the AV under test, the 
green vehicles represent the BVs, and the green vehicle with the 
orange rectangle represents the POV. An additional explanation 
of these adversarial examples is provided in Supplementary 
Movie 3. 

Discussion 
In the previous section, we showed the effectiveness of NADE for 
driving intelligence testing of AVs. Our method can be used to 

this knowledge may not be complete, it can be leveraged by our 
framework in constructing SM and thus reduces the difference 
between the SM and the AV model. The second problem is 
essentially a policy evaluation in the AI domain, where state-of-
the-art algorithms such as those from deep reinforcement 
learning can be utilized for further reducing the approximation 
errors. As discussed before, with smaller approximation errors, 
the NADE can further accelerate the testing process of AVs. 
Our approach requires a large amount of naturalistic driving 

data to model the driving behaviors of background vehicles in 
NDE. The relative position and speed information of the ego 
vehicle and surrounding vehicles are needed to construct the 
empirical distributions of vehicle interaction behaviors. For a 
complex driving environment, millions of data points would 
be required to represent the variability of the environment. 
Fortunately, with the deployment of vehicle-based and 
infrastructure-based perception sensors, nowadays the data can 
be collected at a lower cost and become more accessible38. 
The case study in this paper has several simplifications (e.g., 

highway driving, limited actions, vehicles only, etc.) for the con-
venience of experiments. However, as shown in the “Methods” 
section, our approach is not limited to these simplifications and can 
be readily extended for more complex scenarios, larger action space, 
and various road users, with the input of sufficient naturalistic 
driving data. 
Another limitation of our approach is the lack of perception 

related tests (e.g., weather conditions) in the generated NADE. 
However, if the challenge to AVs’ perception can be measured 
and a small but critical set of variables regarding AVs’ perception 
can be identified and adjusted, NADE for perception related tests 
can also be constructed. There have been significant advances in 
adversarial image synthesis39–41, which are promising for solving 
this problem. 

Methods 
Generation of NDE. This section describes our data-driven algorithm for NDE 
construction, which, in essence, is a sampling process from the joint distributions 
of the variables that represent the complexity and variability of NDE. To simplify 
the high dimensional spatiotemporal distributions, the NDE is modeled with the 
Markov decision process (MDP) and probabilistic graphical models (PGM), 
leveraging spatiotemporal independence relations among the variables. Specifically, 
the NDE is decomposed into six different scenarios (Fig. 2c), and, for each scenario, 
the exposure frequency distribution of each vehicle maneuver is calculated from the 
NDD. The NDE can then be simulated by sampling each vehicle maneuver from 
the obtained exposure frequency distributions. 

In this paper, the NDE is represented by a list of parameters that are pre-
determined by the operational design domain (e.g., road type, weather condition, 
etc.) and variables that may vary (e.g., accelerations of background vehicles). The 
variables can be represented as 2 3 

x1;1 x1;T 6enhance the existing life-like simulations to accelerate the test x ¼ 6 .... . 
.... 

7 7; x 2 X; ð1Þ 
process. It can also be used to systematically generate valuable 
adversarial examples for the further development of AVs. The 
adversarial yet naturalistic environment is also promising for 
accelerated training of AVs. The scalability of our method makes 
it possible to be used in large-scale simulations, such as a city-
scale driving environment, as long as sufficient naturalistic driv-
ing data is available. The NADE framework may also be applied 
to the intelligence tests of other types of robotics with similar 
features. 
The efficiency of using NADE for driving intelligence testing is 

dependent on the approximation error of the maneuver challenge 
of BVs. The approximation error comes from two problems, one 
is the difference between the SM and the real AV under test, and 
the other is the prediction error of the AV maneuver in the 
following time steps, which is interdependent on the maneuvers 
of BVs. The first problem can be mitigated by prior knowledge of 
the AV, such as the testing results of its previous model. Although 

4 5 
xN;1 xN;T 

where xi,j denoted the variables (e.g., position and speed) of the i-th BV at the j-th 
time step, N denotes the number of BVs of interest, T denotes the total number of 
time steps, and X denotes the feasible space of variables. The NDE generation is to 
sample values of variables according to their naturalistic joint distributions, 
denoted as x ∼ P(x). 

As P(x) is extremely high dimensional, we simplify the problem by exploiting 
spatiotemporal independence relations among the variables. Assuming the 
Markovian property, the joint distribution can be simplified in a factorized way as 

T Y 
PðxÞ ¼ Pðsð Þ0 Þ ´ Pðuð Þk jsð Þk Þ: ð2Þ 

k¼0 

Here, the state and action at the time step k ¼ 0; ; T are denoted as 

sð Þ ¼k ½�s0ð Þk ; s1ð Þk ; sN ð Þk ; ð3Þ 
uðkÞ ¼ ½�u1ð Þk ; ; uN ð Þk ; 

where s0 denotes the state (e.g., position and speed) of the AV under test, si (i = 1, 
…,N) denotes the state of the i-th BV, and ui denotes the maneuver (e.g., 
longitudinal accelerations) of the i-th BV. Then the NDE is generated by sampling 

NATURE COMMUNICATIONS |        (2021) 12:748  | https://doi.org/10.1038/s41467-021-21007-8 | www.nature.com/naturecommunications 11 

www.nature.com/naturecommunications
www.nature.com/naturecommunications
https://doi.org/10.1038/s41467-021-21007-8
https://doi.org/10.1038/s41467-021-21007-8


� �
� �

� �

���� �

�

�

���� �

�

� �
�

���� �

�

        

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21007-8 

t=0 t=1 t=1.3 t=2a 
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Fig. 8 Adversarial examples generated in NADE. a The autonomous vehicle (AV, blue vehicle) was on high speed and had a rear-end collision with the 
cut-in principal other vehicle (POV, green vehicle with orange rectangle) after two front-left POVs sequentially changed their lanes towards the AV. b The 
AV made a left lane change and collided with the POV due to a lane conflict (the POV accelerated first and then made a right lane change, simultaneously 
with the AV). c The AV turned left to avoid the collision to the cut-in POV but failed as the cut-in POV switched back to the left lane simultaneously with 
the AV. d The AV made an evasive lane change to avoid one cut-in POV but eventually collided with another cut-in POV. 

maneuvers as u (k) ~  P(u (k)|s (k)) at each time step. To simplify P(u (k)|s (k)), it is 
assumed that all BVs choose their maneuvers simultaneously and independently, so 
we can calculate it in a factorized way as 

N Y 
Pðuð Þk jsð Þk Þ ¼  Pðuið Þk jsð Þk Þ: ð4Þ 

i¼1 

The P(ui (k)|s (k)) is further simplified by assuming spatial independence, for 
example, the car-following maneuvers of a BV are only dependent on states of itself 
and its leading vehicle. Let Ni denote all vehicles that have dependencies with the i-

th BV. Then the P(ui (k)|s (k)) can be approximated by P uið Þk jsN ð Þk . 
i 

Finally, the P uið Þk jsNi 
ð Þk is calculated by the empirical probability of the 

state-action pair in NDD, as shown in Fig. 2d. 

Generation of NADE. This section describes our algorithm for NADE construc-
tion. The key is to obtain new behavioral distributions q(u|s) as the replacement of 
P(u|s) in NDE. To overcome the challenge of high dimensionality, we identify the 
POV at the critical moment and only adjust its behaviors. 

To identify POV, we define the maneuver criticality as the multiplication of 
exposure frequency P(ui|s) and maneuver challenge P(Ai|s,ui) as  

Δ
VðuijsÞ ¼  ð j Þ ð ijs; ui ð5ÞP ui s ´ P A  Þ; 

where Ai denotes the accident between the i-th BV and the AV under test. The first 
part on the right-hand side is the exposure frequency obtained from NDD. The 
second part is the maneuver challenge that indicates the accident probability given 
the state-action pair (s, ui). Since we treat the AV model under test as a black box, 
to approximate the maneuver challenge, we construct SMs of AVs by meta-models, 
described in more detail in the Supplementary Methods. We should note that the 
SMs can also be constructed based on the preliminary AV models, so it provides an 
elegant way to leverage the existing testing results of preliminary AV models. Let Si 
denote the accident between the i-th BV and the SMs. Then, the maneuver 
challenge can be approximated by P 

P Ai s; uiÞ ¼  P u0 sÞP Aijs;ui; u0 Þ;ð j ð j ð 
u0 P ð6Þ 
Pðu0 jsÞP Si sN ;ui; u0 ;i 

u0 

where P(u0|s) denotes the probability of the AV’s maneuver u0 at the state s, and  sNi 

denotes the states of the vehicles that influence the event Si. The first term P(u0|s) 

can be predicted approximately by the SMs, and the second term P Si sN ;ui; u0i 

can be evaluated by simulations of the SMs in the scenarios specified by 

sN ; ui; u0 . Realizing that the evaluation of P Si sN ;ui; u0 may not be 
i i 

completed by one-time-step simulation, to obtain the evaluation result quickly, 
reinforcement learning or deep reinforcement learning methods may be used. In 
this paper, we adopted reinforcement learning techniques for the basic scenarios 
such as car-following, while more general scenarios can be approximated by the 
combination of basic scenarios, as shown in Fig. 4. 

The criticality for each BV can then be calculated as the summation of 
maneuver criticality over all the BV’s maneuvers: X

Δ
CiðsÞ ¼  VðuijsÞ; ð7Þ 

ui 

and the POV can be identified by 

Δ 
c ¼ arg maxiCið Þs ; ð8Þ 

if Cc (s) >  C, where C is a pre-determined threshold (e.g., 0). We define the moment 
as the critical moment if there is at least one POV. Because most accidents involve 
only two vehicles, we considered at most one POV at each moment in this work. 
The generalization of this work to multiple POVs is straightforward. 

Finally, we construct the importance function q(u|s) by adjusting the 
maneuvers of POV at the critical moment as 

N Y 
qðujsÞ ¼ qðu jsÞ ´ PðuijsÞ; ð9Þ 

i¼1;i≠c 
c 

where uc denotes the maneuver of POV. Only the POV’s maneuver is adjusted by q 
(uc|s), while other vehicles follow their naturalistic distributions as in NDE. For 
uncritical moments, all vehicles behave as in NDE. The q(uc|s) is constructed by the 
weighted average of the naturalistic distribution and the normalized criticality 
distribution as 

Vðu jsÞcqðucjsÞ ¼ εPðucjsÞ þ ð1 εÞ ; ð10Þ 
Ccð Þs 

where ε > 0 is the weight of the naturalistic distribution. It can balance the 
exploitation and exploration to mitigate the influence of approximation errors of 
maneuver criticality. 
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Evaluation of AVs with NADE. This section describes how to estimate the acci-
dent rate of AVs when testing with NADE. Specifically, if the event of interest 
(accident event of AVs in this paper) is denoted as A, we can measure the driving 
intelligence of AVs by X 

P Að Þ ¼  P Aj ÞP xð x ð Þ; ð11Þ 
x2X 

where x denotes variables of the driving environment, and X denotes its feasible 
domain. The NDE-based testing method is essentially to estimate P(A) by the Crude 
Monte Carlo (CMC) method as 

n P 
P A  P AjxiÞ P x ;ð Þ  1 ð ; xi ð Þ  n 

i¼1 ð12Þ 
m ;n 

where n denotes the number of tests, m the number of the event A during the tests, 
and xi ∼ P(x) indicates that the variables are sampled from their naturalistic 
distributions. 

Because the event A is usually a rare event for AVs in NDE, the CMC method 
suffers from severe inefficiency limitations. To mitigate this issue, the importance 
sampling (IS) method was applied for scenario-based methods as P P Aj ÞP xð x ð Þð Þ ¼ ð ÞP A  qð Þx q x ; 

x2X ð13Þn P ð P xi1 P AjxiÞ ð Þ  qð Þx ;n q xið Þ  ; xi 
i¼1 

where q(x) is called the importance function. By introducing importance functions, 
the testing priority of critical scenarios will be improved, so does the evaluation 
efficiency14–17. However, all existing IS-based methods suffer from the “curse of 
dimensionality”19, and thus cannot be applied directly for the complex driving 
environment. 

We solve the “curse of dimensionality” by combining CMC and IS methods. 
Conceptually, only the critical variables are adjusted by the IS method, while other 
variables keep their naturalistic distributions following the CMC method. 
Following the formulation and assumptions in NDE and NADE, we derive the 
performance estimation equation as "  # !  

n Ti X Y1 Pðuð Þk jsð Þk Þ 
P Að Þ  P Að jxi Þ´ ; ð14Þ 

n qðuð Þk jsð Þk Þi¼1 k¼1 

where Ti denotes the total time steps of the i-th simulation test. In this study, we 
terminate a test if an event A happens or the test reaches the pre-determined 
driving distance. Denote Ti,c as the set of critical moments of the i-th test, and, 
finally, the performance estimation equation can be obtained as 0 2 31 

n X Y 
P Að Þ  @P Að jxiÞ ´ 4 R kð Þ5A; ð15Þ 1 

n i¼1 k2Ti;c 

where 

Δ Pðu ð Þk jsð Þk ÞcR kð Þ ¼  ; ð16Þ 
qðu ð Þk jsð Þk Þc 

is the simulation weight (likelihood ratio) recorded during the test process. The P 
(A|xi) is estimated by counting the number of accident events occurring in the test. 
Based on this equation, the accident rate of the AV under test can be estimated by 
the testing results in NADE. 

Theoretical analysis of accuracy and efficiency. This section theoretically jus-
tifies the accuracy and efficiency of our NADE-based testing method. As proved by 
the IS theory33, the performance evaluation is unbiased if q(x) > 0 whenever P(A|x) 
P(x) ≠ 0. As ε > 0 in the generation of NADE, we can guarantee q(u|s) > 0 whenever 
P(u|s) ≠ 0 for all states and actions, which is sufficient for unbiasedness. Therefore, 
our NADE-based testing method is statistically accurate. 

To justify the efficiency of our method, we introduce the lemma regarding the 
“curse of dimensionality” of the IS method19: 

Lemma 1. 
The estimation variance of the IS method has the lower bound as n h i o 

* σ2 ≥ P2 A q ð Þ k qð Þx 1 ; ð17Þð Þ  exp DKL x 

where q *(x) is the optimal importance function with zero estimation variance, and 

* 
* q ð Þx 

DKL q ð Þ kx qð Þx ¼ Eq * x log ; ð18Þð Þ  qð Þx 

*is the Kullback–Leibler (KL) divergence as the measurement of discrepancies between q 
(x) and q(x). 

Following the independence assumptions in NDE, if the IS method is directly applied, we 
can derive the equations as 

T Y 
* * * q x s 0 Þ´ q ð ð Þjs k Þ; ð19Þð Þ ¼ q ð ð Þ  u k ð Þ  

k¼1 

* * T N XX * q ð Þx q ðsð Þ0 Þ q ðuið Þk jsð Þk Þ 
log ¼ log þ log : ð20Þ 

qð Þx qðsð Þ0 Þ qðuið Þk jsð Þk Þ
k¼1 i¼1 

ui ðkÞjsðkÞÞAs log q*ð is usually predetermined by prior knowledge utilized for generating the qðui ðkÞjsðkÞÞ 
importance functions, the KL divergence will increase linearly with the dimensionality (O 
(NT)), and, therefore, the estimation variance will increase exponentially with the 
dimensionality, leading to the “curse of dimensionality”. 
For NADE, if the variance is only dependent on the dimensionality of the adjusted 
critical variables, i.e., the maneuvers of POV at the critical moments, then our method 
addresses the “curse of dimensionality”. Specifically, if we denote xc the critical variables, 
which are independent of all other variables x−c, we propose the theorem as follows, and 
the proof can be found in the Supplementary Methods. 

Theorem 1: 
The estimation variance of our method has the following relations: 

* σ2 ¼ P2 A q ð Þ k q x ð k xð ÞDχ2 x ð Þ þ D x Þ ð21Þc c c 

*≥ P2 A q ð Þ k q x 1 þ Dðx k xð Þ exp DKL x ð Þ  Þc c c 

q * ðxc Þ 2 
*where Dχ2 q x Þ k qðx Þ ¼ Eq x qð 1 denotes the χ2-divergence, q x *ð ð Þ ¼  c c ð Þ  x Þ cc c 

P Að jx ÞPð Þxc c 
P A  denotes the optimal importance function for the critical variables, and Dðxc kð Þ  h i 

2P2 ðxÞ 
qðxÞ c q2 ðxÞxÞ ¼ E ðPðAjxÞ� PðAjx ÞÞ measures how critical the adjusted variables are. 

The term D(xc||x) measures the variance caused by the identification of critical variables. 
The more critical the adjusted variables xc are, the closer P(A|xc) is to  P(A|x), and thus 
the closer D(xc||x) is to zero. 
The KL divergence and  χ2-divergence measure the discrepancies between optimal importance 
functions and proposed importance functions. Compared with Lemma 1, both the diver-
gences are related to the dimensionality of the critical variables, instead of all variables, which 
resolves the challenge of high dimensionality for rare event estimation problem. 

Data availability 
The raw datasets that we used for modeling the naturalistic driving environment come 
from the Safety Pilot Model Deployment (SPMD) program24 and the Integrated Vehicle 
Based Safety System (IVBSS)25 at the University of Michigan, Ann Arbor. The processed 
data (e.g., empirical distributions of vehicle maneuvers) and other data that support the 
findings of this study are available from the corresponding author on reasonable request. 
Source data for figures are provided with this paper in the Supplementary Data. Source 
data are provided with this paper. 

Code availability 
The highway traffic simulator and the autonomous vehicle simulation platform are 
publicly available, as described in the text and the relevant references6,23. The codes used 
for the generation of the naturalistic and adversarial driving environment are available 
from the corresponding author on reasonable request. Moreover, we have also provided 
the simulation architecture of our approach in Supplementary Fig. 1 and the algorithm 
flowchart in Supplementary Fig. 2. 
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